Medindia

X

Eye Development Error Causing Cataracts, Glaucoma Discovered

by Kathy Jones on  March 27, 2011 at 8:42 PM Research News   - G J E 4
RNA granules - key players in messenger RNA (mRNA) processing - can affect eye development, leading to juvenile cataracts in humans and mice, says a new study.
 Eye Development Error Causing Cataracts, Glaucoma Discovered
Eye Development Error Causing Cataracts, Glaucoma Discovered
Advertisement

The research, conducted by Jackson Laboratory research team in collaboration with researchers at Brigham and Women's Hospital and Harvard Medical School in Boston, also demonstrates the first connection between RNA granules and glaucoma, as the humans and mice in the study developed glaucoma.

Advertisement
In the laboratory of Jackson Professor and Howard Hughes Medical Institute Investigator Simon John, study coauthors Stephen Kneeland, and Gareth Howell, identified a malfunctioning gene in a mouse strain that develops both cataracts and glaucoma. The gene, Tdrd7, fails to build an essential protein and disrupts the development of the mouse eye lens. Mice missing the protein developed high intraocular pressure and optic nerve damage-the hallmarks of glaucoma-as well as cataracts.

The John team learned that Salil A. Lachke, of Brigham and Women's Hospital and Harvard Medical School, then a research fellow in the laboratory of Richard L. Maas, had found the same malfunction in a study of genetic data from patients with pediatric cataracts.

The research teams combined forces and discovered that the protein missing in the children and the mice belongs to a type of structure known as RNA granules.

RNA granules function to regulate mRNAs in the cell. mRNA's primary job is to serve as a template to carry DNA-encoded information from the nucleus into the cytoplasm or body of the cell, providing the blueprints for protein production.

The TDRD7 mutation affects mRNA regulation, and this misregulation was implicated in causing the cataracts. Furthermore, the human patients developed glaucoma following cataract extraction.

TDRD7 deficiency greatly reduces the number of stress granules that are produced in lens cells in response to oxidative stress, the researchers show. Stress granules, a specific type of RNA granule, are important to protect the cell in stressful conditions. Oxidative stress has been previously suggested to contribute to glaucoma by damaging the ocular drainage structures. The new findings imply that mice and patients with these mutations may not have adequate protection from oxidative stress in the drainage structures of the eye. With increasing age, their tissues may be more susceptible to oxidative damage resulting in high intraocular pressure and glaucoma.

Although further experiments are needed to be certain, this work is the first to suggest that RNA granules are important in modulating the oxidative stress response relevant to glaucoma.

John noted, "There is a growing body of literature indicating that if you disturb oxygen levels in the eye-including after cataract surgery-the risk of developing glaucoma increases."

John said that mutations in the TDRD7 gene could cause a double jeopardy for childhood glaucoma.

"First, they cause cataract, and cataract extraction may raise oxidative stress in the ocular drainage tissues. Second, they impair the formation of protective stress granules in response to oxidative stress," added John.

The study has been published in the March 25 issue of Science.

Source: ANI
Advertisement

Post your Comments

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
User Avatar
* Your comment can be maximum of 2500 characters
Notify me when reply is posted I agree to the terms and conditions
It's good that researchers found the culprit behind cataracts and glaucoma. But still, further studies are needed. Maybe with this newest findings, they can create new drugs that targets the RNA.
ennairam_23 Sunday, March 27, 2011

You May Also Like

Advertisement
View All