Dangerous Viruses Quickly Identified by New Tools

by Rathi Manohar on  November 24, 2010 at 8:30 PM Clinical Trials News   - G J E 4
Dangerous viruses like Ebola and Marburg can now be quickly identified by a simple diagnostic tool developed by Boston University researchers.
 Dangerous Viruses Quickly Identified by New Tools
Dangerous Viruses Quickly Identified by New Tools

The biosensor, which is the size of a quarter and can detect viruses in a blood sample, could be used in developing nations, airports and other places where natural or man-made outbreaks could erupt.

"By enabling ultra-portable and fast detection, our technology can directly impact the course of our reaction against bio-terrorism threats and dramatically improve our capability to confine viral outbreaks," said Assistant Professor Hatice Altug of the Boston University College of Engineering, who co-led the research team with Assistant Professor John Connor of the Boston University School of Medicine.

Traditional virus diagnostic tools are effective, but require significant infrastructure and sample preparation time. The new biosensor developed at Boston University directly detects live viruses from biological media with little to no sample preparation.

Partly funded through the Boston University Photonics Center and the U.S. Army Research Laboratory, and working in collaboration with the U.S. Army Medical Research Institute for Infectious Diseases, the team has demonstrated reliable detection of hemorrhagic fever virus surrogates (i.e. for the Ebola virus) and pox viruses (such as monkeypox or smallpox) in ordinary biological laboratory settings.

The new biosensor is the first to detect intact viruses by exploiting plasmonic nanohole arrays, or arrays of apertures with diameters of about 200 to 350 nanometers on metallic films that transmit light more strongly at certain wavelengths. When a live virus in a sample solution, such as blood or serum, binds to the sensor surface, the refractive index in the close vicinity of the sensor changes, causing a detectable shift in the resonance frequency of the light transmitted through the nanoholes. The magnitude of that shift reveals the presence and concentration of the virus in the solution.

"Unlike PCR and ELISA approaches, our method does not require enzymatic amplification of a signal or fluorescent tagging of a product, so samples can be read immediately following pathogen binding," said Altug. Ahmet Yanik, Altug's research associate who conducted the experiments, added, "Our platform can detect not only the presence of the intact viruses in the analyzed samples, but also indicate the intensity of the infection process."

The breakthrough is detailed in the online edition of Nano Letters.

Source: ANI

Post your Comments

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
User Avatar
* Your comment can be maximum of 2500 characters
Notify me when reply is posted I agree to the terms and conditions

You May Also Like

View All