Bacteria Magnets to Kill Tumours Developed

by Gopalan on  March 3, 2008 at 4:39 PM Research News   - G J E 4
Bacteria Magnets to Kill Tumours Developed
UK researchers have developed tiny magnets made of bacteria that could kill tumours.

The bacteria-produced magnets are better than man-made versions because of their uniform size and shape, the Nature Nanotechnology study reported.

It is hoped one day the magnets could be guided to tumour sites and then activated to destroy cancerous cells.

The bacteria take up iron from their surroundings and turn it into a string of magnetic particles.

They use the chains of particles like a needle of a compass to orient themselves and search for oxygen-rich environments.

There has been a lot of interest in their potential application in medicine, but how useful they could be will depend on the strength of the magnets.

Scientists at Edinburgh University grew the bacteria in a mixture that contained more cobalt than iron, BBC said.

The addition of cobalt in the nanomagnets made them 36-45% stronger.

This meant they stayed magnetised longer when taken out of a magnetic field.

The ability of the nanomagnets to remain magnetised opens the way for their use in killing tumour cells, the researchers said.

They could be guided to the site of a tumour magnetically.

Once there, applying an opposite magnetic field would cause the nanomagnets to heat up, destroying cells in the process.

They could also potentially be used to carry drugs directly to the cancerous tissue.
Study leader, Dr Sarah Staniland, a research fellow at the University of Edinburgh, said: "For nanoparticles to be used in medicine you need them to be a very uniform size and shape and bacteria are very good for that.

"This increases the scope for their use in cancer.

"You would move them with a normal magnetic field and then heat them with the opposing field."

Liz Baker, Cancer Research UK's science information officer, said: "Targeting treatments specifically to cancer cells is an exciting area of research, but in this case work is still at a very early stage.

"It will be interesting to see if further research into nanomagnets will provide us with a new and effective anti-cancer therapy."

Source: Medindia

Post your Comments

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
User Avatar
* Your comment can be maximum of 2500 characters
Notify me when reply is posted I agree to the terms and conditions

You May Also Like