Artemisinin-Based Combination Therapies For Malaria Treatment

by Aruna on  March 2, 2009 at 11:14 AM Drug News   - G J E 4
 Artemisinin-Based Combination Therapies For Malaria Treatment
By using synthetic biology and E. coli fermentations, scientists have produced 25g/L of amorphadiene, a precursor of the antimalarial agent artemisinin.

It was in 2003 that the production of amorphadiene in E. coli was first described, but the amount produced was low (50 mg/L). The level was increased to 0.5g/L in 2006, but still 50-fold lower than target production levels.

In the new study, researchers have described the interplay of industrial fermentation processes and synthetic biology that achieve the required 50-fold increase in production levels.

This milestone acts as proof of concept that microbes for conversion to artemisinin can produce commercially relevant concentrations of artemisinin precursors.

The World Health Organization considers artemisinin-based combination therapies (ACTs) to be first-line treatment for malaria.

But, as the supplies of plant-derived artemisinin are subject to the seasonality and volatility common to many plant-based commodities, it leads to fluctuations in the price of artemisinin.

Commercial scale production of semi-synthetic artemisinin would have the potential to stabilize supply and supplement existing plant-derived materials to create a consistent, high-quality and affordable new source of artemisinin to help meet the projected world-wide demand for ACTs.

Originally, the microbial production of Artemisinin precursors was demonstrated in the lab of Professor Jay Keasling at the University of California, Berkeley.

Then Keasling continued the research and founded Amyris to bring the technology to the developing world.

Dr. Jack Newman, a former Post-doc in the Keasling lab and co-founder of Amyris, praised the collaboration effort and the potential of the technology.

"The enormous amount of work involved on the road from idea through execution is mind-boggling. I'm grateful to the dedicated team of researchers, philanthropists and visionaries that made this happen. They have demonstrated the potential of this technology to make a difference in the world," he said

The article, "High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli" appears in PLoS ONE, an open-access journal from the Public Library of Science.

Source: ANI

Post your Comments

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
User Avatar
* Your comment can be maximum of 2500 characters
Notify me when reply is posted I agree to the terms and conditions

You May Also Like