3D Structural Model Of Critical Protein Produced By Swine Flu Virus Developed

by VR Sreeraman on  May 24, 2009 at 12:41 PM Research News   - G J E 4
 3D Structural Model Of Critical Protein Produced By Swine Flu Virus Developed
Scientists at the Singapore-based Bioinformatics Institute (BII) have developed a computational 3-dimensional (3D) structural model of a critical protein produced by the swine flu virus.

Writing about his team's work in the Biology Direct journal, lead researcher Dr. Sebastian Maurer-Stroh has revealed that the protein is called neuraminidase.

"Because we were working as a team, driven by the common goal to understand potential risks from this new virus, our group at BII was able to successfully complete this difficult analysis within such a short time," he says.

Dr. Maurer-Stroh says that the new 3D model has enabled his team to map the regions of the protein that have mutated, and determine whether drugs and vaccines that target specific areas of the protein are effective.

He says that his study's findings suggest that neuraminidase structure of the 2009 H1N1 influenza A virus has undergone extensive surface mutations compared to closely related strains such as the H5N1 avian flu virus or other H1N1 strains, including the 1918 Spanish flu.

He and his colleagues have also found that neuraminidase of the 2009 H1N1 influenza A virus strain is more similar to the H5N1 avian flu than to the historic 1918 H1N1 strain (Spanish flu).

The researcher says that current mutations of the virus have rendered previous flu vaccinations directed against neuraminidase less effective.

However, commercial drugs, namely Tamiflu and Relenza, are still effective in treating the current H1N1 virus, says Dr. Maurer-Stroh.

This is the first time that any team of researchers have shown how bioinformatics and computational biology can contribute towards managing the H1N1 influenza A virus.

"BII's H1N1 virus sequence study marks a significant milestone in the use of computational biology methods in understanding how the mutations of the fast evolving influenza virus affect immunogenic properties or drug response. This information helps to develop a strategy for fighting the H1N1 virus and for organising an effective treatment for patients," said BII Director Dr. Frank Eisenhaber.

Source: ANI

Post your Comments

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
User Avatar
* Your comment can be maximum of 2500 characters
Notify me when reply is posted I agree to the terms and conditions

You May Also Like

View All