Medindia
Medindia LOGIN REGISTER
Advertisement

Cats Lend a Helping Paw in Search for Anti-HIV Drugs

Tuesday, September 16, 2014 Drug News
Advertisement
HAIFA, Israel and NEW YORK, Sept. 16, 2014 /PRNewswire-USNewswire/ -- If you're not making regular trips to the vet for your kitty these days, you may not know that cats can get AIDS too. The feline virus FIV that causes the disease in cats looks a lot like HIV, a fact that Technion scientists say could inspire new anti-HIV drugs.
Advertisement

How can a cat help the fight against AIDS? Both FIV and HIV rely on a protein called integrase that inserts the virus' DNA into an infected cell's DNA. Now, Assistant Professor Akram Alian and graduate student Meytal Galilee of the Technion-Israel Institute of Technology may have found a new weak point in the protein that drug designers may be able to target in the future.
Advertisement

In an article published online this month in Cell Structure, the two researchers from the Faculty of Biology offer up a detailed, 3-D molecular map of FIV integrase that could help scientists also understand how this protein works in HIV.

For instance, the researchers have pinpointed a single amino acid change that seems to be critical in highlighting how the protein assembles itself from simpler building blocks. Anti-HIV drug designers are eager to find ways to derail this assembly process.

"Designing drugs which target such specific hot spots," Alian explained, "may be easier than targeting the entire protein-protein interacting interface."

Scientists have been able to determine the 3-D structure of  the complicated molecular core of HIV integrase. But in FIV, Alian and Galilee were able to solve the structure in a more simple form. The researchers determined that a mutation in a single amino acid can convert the integrase from the more complex to the simpler form in FIV.

In fact, that single amino acid may act as a crucial "hinge" point that connects two molecular subunits and allows them to pivot about in the protein's fully active core.

"Highlighting the hinge...is an important observation that should be considered in the future design of integrase drugs," Alian said.

Their close examination of the crystal structure of the FIV integrase core also revealed that the "backbone" of the simple and complex forms are nearly identical. This may make it easier for scientists to study the simpler form in the laboratory and know that some of their findings will apply to the more complex HIV integrasecore as well.

In their next studies, Galilee and Alian hope to focus on how the FIV virus might evolve over time, to keep replicating in the face of a mutation like the one that produced the simple integrase core. "This will help us predict how emergent resistant viral variants may evolve to escape or become resistant to future drugs," Alian said.

The Technion-Israel Institute of Technology is a major source of the innovation and brainpower that drives the Israeli economy, and a key to Israel's renown as the world's "Start-Up Nation." Its three Nobel Prize winners exemplify academic excellence. Technion people, ideas and inventions make immeasurable contributions to the world including life-saving medicine, sustainable energy, computer science, water conservation and nanotechnology. The Joan and Irwin Jacobs Technion-Cornell Innovation Institute is a vital component of Cornell NYC Tech, and a model for graduate applied science education that is expected to transform New York City's economy.

American Technion Society (ATS) donors provide critical support for the Technion—more than $1.95 billion since its inception in 1940. Based in New York City, the ATS and its network of chapters across the U.S. provide funds for scholarships, fellowships, faculty recruitment and chairs, research, buildings, laboratories, classrooms and dormitories, and more.

SOURCE American Technion Society

Sponsored Post and Backlink Submission


Latest Press Release on Drug News

This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close